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ABSTRACT. This note is devoted to the derivation and simple

- application of chapeau functions. The concept of the Galerkin
method for the solution of partial differential equations is
introduced, a special case of which is the chapeau function

. technique. Chapeau functions are used for approximating
solutions of linear and non-linear advection equations after
certain basic relationships are derived.

Introduction

.Our decision to use an implicit chapeau function technique in the TDL

3-dimensional boundary layer model [1] was based upon the need to integrate
the predictive boundary layer equations efficiently and with reasonable
accuracy. The use of an implicit finite difference scheme for integrating
the vertical turbulent transfer equations was largely forced upon us;
explicit schemes which remain stable with large time steps all seem to
suffer badly from consistency problems [2]. The need for an implicit
scheme in the horizontal portions of the predictive equations is much

less crucial than for the vertical, provided we retain our 80 km horizontal
mesh spacing. However, since it is very probable that we will begin
experimenting with refined meshes and 2-dimensional telescoping grids in
the near-future, we decided in favor of the extra numerical stability of

an implicit scheme.

Some initial calculations with one of the simplest and best-known of the
implicit schemes, the Crank-Nicolson advection scheme, along with other

.1mplicit techniques derived from conveuntional explicit schemes were not

encouraging. Although more stable, the implicit schemes had worse phase
errors and computational damping than many standard explicit schemes.

The Crank-Nicolson scheme can be improved by replacing the spatial difference

derivative, correct to order 09(Ax2)1, by a spatial derivative correct
to order ( (ax%4):

n+1 ) | +1 .
g - o *l]_equl +6Q§)= 0; &bk’ )

At 2Ax

1 See Appendix I for definition of symbols.
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then the resulting solution is a solution obtained by Galerkin's' method.
As another example, let us take the simple advection equation

9Q 4+ pylQ = 0; U = constant _ 2.9
ot 9x :
and approximate the solution By basis functions e;(x) and time-varying
coefficients ay(t)

Q(x!t) = ai(t) ei(x) 2.6
The Galerkin method demands, '

dag(8)  gax éi(x)e_(x) +a5(t) U Sdx ej(x)ej(x)

dt

N dag (t) =

= My, “ét + Ny ai(t) = 0 2.2
where Mji - Mij = fdx ei(x) ej(x)

and Nji = Nij = !Hx_ei(x)“ej(x)

'_If, as 1s often the case, the trial functions are orthogonal , then

M = mi5 and dui(t) N’iai(t) = 0, 2.8
ij ij dt mi

Suitable basis functions might include trigonometric functions, Legendre
polynomials, etc.

We shall choose instead piecewise continuous '"chapeau" functions, so-called
because each function looks like a hat [Fig. 1]. The figure shows linear
chapeau functions defined by the relations

ej(x) = X7 %51 X, XX
Kj- Xj_l j_ j
e, (x) = *j+1 7% X, <X <X, 2.9
J Rarq = X 3= = JH
3Tl J
ej(x) = 0 otherwise

Although we shall consider only linear chapeau functions in this note,
other basis function which vanish outside the interval [x. ] are
. j-1- J+1

possible, also.

To apply the linear functions to the simple advection problem we need
only to compute My ij and Nj Unfortunately, chapeau functions are not
orthogonal functions; the scalar products fdxe (x)e l(x) do not wvanish
(no summation over j).

We must compute the scalar products indicated by the following figure.




If the values of Q(x;, t = 0) are defined only at the mesh points x; and
the initial chapeau %unction solution collocates with the initial conditioms,
then the chapeau function equation reduces to the finite difference equation,

& n+l n +1 n n+l n
3 [(Qj—l = Qj—l) + 4 (le - Qj) + (Qj+l - Qj+1)]
R n+l n+l n n

UAt
Ax .

where R =

Properties of the chapeau function equation

To examine the stability of (2.16), we substitute gPexp(i)jAx) into (2.16).
After simplification the result is

1+ 1/2 cos AAx - 3iR/2 (1 - ) sin AAx 3.1
B = T +1/2 cos AAx + 3iRp/2 sin AAx

Here g stands for the amplification factor, A the wavenumber (A = 2m/wavelength =
2r/L), i ==¥-1 and R the Courant number.

The special case p = 1/2 is of particular interest; g may then be written as

. 1# 1/2 cos(AAx)- 3iR/4 sin(AAx) o2
g = 1 + 1/2 cos(lﬁx)+ 3iR/4 sin(AAx)

The crucial factor with respect to computational stability is the magnitude

of the complex quantity g. Since the numerator and the denominator are complex
conjugates of each other, g = 1 for all At, Ax, and A. This means the

scheme is neutrally stable; there is neither amplification nor damping waves.
Choosing u < 1/2 can lead to computationally unstable schemes (solutions
amplified). Setting p > 1/2 always gives stable scheme with heavy damping.

Since the numerator and denominator of (3.2) are of the form (a - bi) and
(a + bi) respectively, g may be written as

g = 21t

where ¢ is the real angle
3/4 R sin(MAx)
¢ = arctan (1 + 1/2 cos (AAx))
The phase speed, ¢, of (3.2) can be computed from

e

9.

€ = 0% 5 g



The general scheme then reduces to

d 1 ,
4t (uk—.l + fm.k + ak+l) + E[(zﬂk + By+1) Opil T (Br+1 — Bk-1)%k
= (ZBk + Bk-l) or.k__l] = 8p-1 + 4gk + 81+1 4.6

Unequally Spaced Mesh Points

One of the features of the chapeau function scheme is the ease by which it

can be extended to unequally -spaced grid points. Using the irregularly
spaced array

ey e

J=1 j j+1 j+2
and the notation hy = x.., = X, the new inner product (perhaps "tri-orthogonality"
relation would be an appropria%e term) becomes, )
j 85 3
Saxe () e3() =6 [ny_184, jou ¥ 2 by + By1) 8y,5 + by 83 541] . 5 4

It can be shown that the advective terms for both the simple linear and general

case remain completely unaffected by the variable grid spacing. For the simple
linear case,

h, , by rhy) o b g
6 3-1 3 i 6 *

U i
+ —5:- (QJ+1 Q_‘]—l) = 0. 5.2

Variable grids are not without their problems. If a grid is divided into a
fine-mesh and coarse-mesh region there will be reflections at the interface

whenever a wave passes from one region to the other. We will show an example
of this difficulty later.




Numerical Examples

A series of .1-dimensional examples is given in [3] along with a fairly
lengthly discussion. We will give only the highlights.

In each case, linear and non-linear, the initial state is a Gaussian with
a 1/e half-width of two grid intervals centered at x = 10Ax. The Gaussians
ideally should advect at one grid interval per unit time for thirty time
units,

Figures 3 and 4 compare the solutions of the.chapeau and second-order
Crank-Nicolson schemes for increasing Courant numbers (R = UAt/Ax). Although
for large Courant numbers (R > 2.0), the two schemes give nearly the same
results, the superiority of the chapeau function scheme for smaller Courant
numbers is evident. The reduction in the amplitudes comes about by the

same mechanism as the creation of the wakes behind the Gaussian: the lagging
phase velocity. There is now damping. Figure 5 shows that the solution

for the non-linear case is distinguished from the linear case largely

by the absence of the wake. This may be caused by the small local Courant
numbers except near the center of the Gaussian,

The solution for the 2-dimensional linear case is discussed in the next
section. We use Marchuk's concept of "splitting'" to solve the 2-dimensional
problem [5]. The idea is to solve the x and y direction

. (Qn-!-l/?__Qn) L n+1/2 n = 0
A - + 5 @ +Q)
r  (Qntl _ qntl/2y + Ly @@+ Qn+1/2) 0 7
= : | 5
Tx Q3 =1/6 (Qu41,5 + 4Q1,5 + Qi 5) |

n n - o3 Y

Ly Qf,5 =U/28x (Quy 5 - Q51,5

Here, T is the spatial averaging operator. L is the spatial differencing
operator.

Boundary Conditions and "Ghosts"

When we used cubic splines [3], pseudo spectral techniques and chapeau
functions for the solution of the linear advection equation on a limited
area grid with fixed boundaries, we observed a remarkable phenomenon. When
an object passed out from the forecast domain, a small amount of noise was
generated at the outflow boundary. This noise quickly propagated upstream
and collected at the fixed inflow boundary. The amassing of noise at the
inflow region is caused by noise which moves rapidly against the flow but
can move downstream only at about the same rate as the fluid. In each case,
the noise regenerated either a fairly faithful reproduction (a "ghost") of
the original Gaussian or gave its mirror (negative) image. With the cubic
splines applied to a 2-dimensional limited area grid, the '"ghost" was an



non-linear advection equation passes from the CM region into the RM region
and back into CM. Waves are reflected at both interfaces but particularly
at the RM-CM boundary. Figures 9 and 10 show the possible utility of
gradually reducing the mesh ratio; the ratio is changed from 4:1 to 4:2:1.
This gradual reduction in the mesh ratio resulted in an apparent reduction
of the wave reflections at the RM-MRM (moderately refined mesh) interface
and at the MRM-CM interfaces.

Summary

Chapeau functions are used in the TDL boundary layer model to integrate

the horizontal portions of the predictive equations for temperature, wind,
and humidity. Chapeau functions, a special case of the Galerkin method,
permit the use of longer time steps than would be allowed by usual explicit
techniques. For the case of constant l-dimensional advection, chapeau
functions exhibit fourth-order spatial accuracy, can be made absolutely
stable and are non-dissipative.

The extension to a 2 or 3-dimensional grid can be carried out by using
Marchuk's "splitting" technique.

Fixed outflow boundary values may create ''ghosts'" at the inflow boundary.
The diffuculty may be alleviated by using an implicit upstream differencing
scheme at the outflow boundary.

Telescoping grids create related problems. The interface between a
refined-mesh and a coarse-mesh region seems particularly prone to reflection
difficulties.
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Appendix I Cont'd.

T Spatial averaging -operator

u Horizontal wind speed in
non-linear problems

U Horizontal wind speed for
linear cases

v Wind vector
oy Time—-dependent chapeau
function coefficient for
scalar variable Q
B Time-dependent chapeau
j function coefficient for
variable advective velocity
Ax, At Finite difference time
and space increments
= Approximate équality
= Equivalent to
8 Central difference operator
0,1
th Kronnecker delta; Si,3 1,1=4
A Wave number
u Weighting factor
s Represents tan ‘1C¥J where

y is imaginary part and x
real part of a complex
variable
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Fig. 2. Phase velocities as a function of wavelength for finite difference

schemes listed above.
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+1
Q1) + (=) (Qf4g = Q§-p)] = 0,  w=1/2
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+ U (ox q3‘+1+ Dx qj) = 0 where Dxq, = 2/3 Q4" Qj_li -1/2 (Qj+2- Q_p)
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_.P
Fig. 6. Conjuration of a "ghost" using a

fixed outflow boundary value.. Outflow and
inflow points are denoted by (¢ ).
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